幂函数和指数函数区别:自变量x的位置不同。指数函数,自变量x在指数的位置上,y=a^x(a>0,a不等于1)。幂函数,自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
幂函数和指数函数有什么区别
1、计算方法不同
指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.
幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
2、性质不同
幂函数性质:
(1)$y=x$
定义域为$\mathbf{R}$;值域为$\mathbf{R}$;奇函数;在$\mathbf{R}$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
(2)$y=x^2$
定义域为$\mathbf{R}$;值域为$y\geqslant0$;偶函数;在$(-∞,0)$上单调递减,在$(0,+∞)$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
(3)$y=x^3$
定义域为$\mathbf{R}$;值域为$\mathbf{R}$;奇函数;在$\mathbf{R}$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
指数函数性质:
(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此不予考虑,同时a等于0函数无意义一般也不考虑。
(2)指数函数的值域为(0,+∞)。
(3)函数图形都是上凹的。
(4)a>1时,则指数函数单调递增;若0<a<1,则为单调递减的。
(5)指数函数无界。
(6)指数函数是非奇非偶函数。
指数函数的概念
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
幂函数是什么
幂函数是一种基本的数学函数,它的形式为f(x)=x^a,其中a是一个实数。
幂函数的指数a可以是正数、负数或零。当a为正数时,幂函数呈现出指数增长的特点,函数值随着自变量x的增大而迅速增加。当a为负数时,幂函数呈现出指数衰减的特点,函数值随着自变量x的增大而迅速减小。当a为零时,幂函数的函数值恒为1,不随自变量x的变化而变化。
上一篇:
幂函数的奇偶性与指数的关系下一篇:
幂函数的5个基本性质相关资讯
幂函数的底数不能为零。幂函数的指数是可以为零的,事实上可以是任意实数。但其底数不能为零,这是因为当指数小于零时,按照幂指数的运算规律,可以写在分母上,如果底数为零致使成分母为零,此...
幂函数的指数是可以为零的,事实上可以是任意实数。但其底数不能为零,这是因为当指数小于零时,按照幂指数的运算规律,可以写在分母上,即a^(-2)=1/a。幂函数的指数可以是0吗指数可...
幂函数的奇偶性数要是看多少幂,如果幂是一个正的偶数那一定是偶函数,如果是正的奇数,那就是奇函数。当幂是正数是底数又是正数,那么这个函数就是单调递增的,若是小于0,就单调递减。幂函数...
一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。幂函数一定过(1,1)点。幂函数过哪个定点幂函数在(0,+∞)内都有定义,幂函数的...
一般的,形如y=x^α(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=xy=x、y=x、y=x(注:y=x=1/xy=x时x≠0)等都是幂...
最新资讯