当前位置:

 > 

知识解答

 > 

反三角函数的性质

反三角函数的性质

2024-01-03 16:40 680人阅读

函数存在反函数的充要条件是,函数的定义域与值域是一一映射;一个函数与它的反函数在相应区间上单调性一致;一段连续的函数的单调性在对应区间内具有一致性。

反三角函数的性质

反正弦函数是正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

反余弦函数是余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

反正切函数是正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

反余切函数是余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

反函数都有哪些

1、反正弦函数:正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

2、反余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

3、反正切函数:正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

4、反余切函数:余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

5、反正割函数:正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。

6、反余割函数:余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。

反三角函数的关系公式

余角关系公式

arcsin(x)+arccos(x)=π/2

arctan(x)+arccot(x)=π/2

arcsec(x)+arccsc(x)=π/2

负数关系公式

arcsin(-x)=-arcsin(x)

arccos(-x)=π-arccos(x)

arctan(-x)=-arctan(x)

arccot(-x)=π-arccot(x)

arcsec(-x)=π-arcsec(x)

arcsec(-x)=-arcsec(x)

倒数关系公式

arcsin(1/x)=arccsc(x)

arccos(1/x)=arcsec(x)

arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)

arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)

arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)

arcsec(1/x)=arccos(x)

arccsc(1/x)=arcsin(x)

Baidu
map