有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。无理数主要包含特殊意义的数,如圆周率π及含有π的一-些数;开方开不尽的数的方根;特殊结构的无限不循环小数,如2.010010001。
实数包含有理数和无理数吗
实数包括有理数和无理数。有理数和无理数统称为实数,即实数可以分为有理数和无理数。有理数分为正有理数、0、负有理数;无理数分为正无理数、0、负无理数。
实数还可以分为正实数、O、负实数。正实数有正有理数和正无理数;负实数有负有理数和负无理数。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
实数的性质
1、封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
2、有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一:a>b,a=b,a小于b。
3、传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。
4、与数轴对应:任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集与数轴上的点有着一一对应的关系。
5、稠密性:实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。
实数的分类
1、可以分为整数,分数
整数又可分为正整数,0,负整数。
分数又可分为正分数,负分数。
2、可以分为正数,0,负数
正数又可分为正整数,正分数。
负数又可分为负整数,负分数。
无理数的定义
1、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
2、在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
上一篇:
无理数的三种基本类型下一篇:
有限小数和无限小数的区别相关资讯
有理数,无理数都是实数,实数包括有理数和无理数。有理数、无理数和实数是数学中常见的三种数,它们有着不同的性质和应用。实数(R)可分为有理数(Q)和无理数,其中无理数为无限非循环小数...
复数包括实数和虚数。虚数和实数有着同等地位,二者合在一起成为复数。一个复数由实部和虚部组成,用z=a+bi表示,其中a,b是任意实数。如果一个复数只有虚数部分,则称这个复数是纯虚数...
有理数是指两个整数的比,有理数是整数和分数的集合,整数也可看做是分母为一的分数,有理数的小数部分是有限或为无限循环的数。本文将为大家详细说明,有理数都包含哪些类型的数?有理数包含哪...
无限不循环小数不是有理数,是无理数。有理数是一个整数a和一个正整数b的比,表示为a/b。有理数包括整数和分数,有理数的小数部分是有限的或者是无限循环的数。无理数,不能写作两整数之比...
无理数的定义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。有理数的定义:是指两个整数的比。有理数是整数和分数的集合,0也是有理数。有理数和无理...
最新资讯