不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变。
不等式的基本性质是什么
1、传递性:如果a ≤ b且b ≤ c,则a ≤ c。
2、反对称性:如果a ≤ b且b ≤ a,则a = b。
3、加法性:如果a ≤ b,则a + c ≤ b + c,其中c为任意实数。
4、乘法性:如果a ≤ b,且c为正实数或零,则ac ≤ bc;如果c为负实数,则ac ≥ bc。
5、不等式的加减混合性:如果a ≤ b且c ≤ d,则a + c ≤ b + d。
6、不等式的乘除混合性:如果a ≤ b且c ≥ 0,则ac ≤ bc;如果c ≤ 0,则ac ≥ bc。
基本不等式中常用公式
(1)√((a+b)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)
(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)
(3)a+b≥2ab。(当且仅当a=b时,等号成立)
(4)ab≤(a+b)/4。(当且仅当a=b时,等号成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)
不等式的定义
不等式是数学中利用不等号表示的一种关系。形式上,不等式可以写成a ≤ b、a < b、a ≥ b或a > b等形式,分别表示“不大于”、“小于”、“不小于”和“大于”。
不等式中的a和b可以是任意实数或变量。对于两个实数a和b,可以利用比较运算符(如“≤”、“≥”、“<”、“>”)来判断它们的大小关系。
不等式的解题方法与技巧
解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:
(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。
(3)两边平方法:适用于两边非负的方程或不等式。
(4)几何意义法:适用于有明显几何意义的情况。
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
相关资讯
一般地,用纯粹的大于号“”、小于号“”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。那么...
不等式的基本性质包括三个方面:不等式两边同时加或减去同一个数,不等号方向不变;不等式两边同时乘以或除以同一个正数,不等号方向不变;不等式两边同时乘以或除以同一个负数,不等号方向发生...
概率,亦称“或然率”,它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一...
分数除法是分数乘法的逆行运算(逆运算)。分数除法的计算法则为:甲数除以乙数(0除外),等于甲数乘乙数的倒数,分数除法的结果能约分的要约分。分数除法的基本性质分数的分子和分母同时扩大...
函数存在反函数的充要条件是,函数的定义域与值域是一一映射;一个函数与它的反函数在相应区间上单调性一致;大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C其中...
最新资讯